Neurologie pro praxi – 2/2023

NEUROLOGIE PRO PRAXI / Neurol. praxi. 2023;24(2):103-110 / www.neurologiepropraxi.cz 108 HLAVNÍ TÉMA Využitie OCT‑angiografie (OCT‑A) pri sclerosis multiplex Obr. 5. Výstupný protokol OCT-A zrakového nervu u 40-ročnej pacientky vpravo s MS-NON a vľavo MS-ON. Hore zľava: A) SLO obraz papily a okolia, B) farebná mapa hrúbky RNFL v peripapilárnej oblasti, C) lineárny graf hrúbky RNFL v meranej oblasti, D) lineárny graf porovnávajúci stranový rozdiel hrúbky RNFL z oboch očí, E) farebná mapa hrúbky buniek gangliového komplexu (GCC), F) peripapilárna hrúbka RNFL, G) kruhový segmentovaný graf hrúbky RNFL a denzity ciev, H) OCT-A RPC, CH) lineárny transpapilárny B-sken s vyznačenou cievnou registráciou (červená), I) tabuľka s parametrami z analýzy RNFL, ONH, GCC, RPC denzity ciev (archív Očnej kliniky UPJŠ LF a UNLP Košice) LITERATÚRA 1. Aly L, Noll Ch, Wicklein R, et al. Dynamics of Retinal Vessel Loss After Acute Optic Neuritis in Patients With Relapsing Multiple Sclerosis. Neurology‑Neuroimmunology Neuroinflammation. 2022;9:3. doi: 10.1212/NXI.0000000000001159. 2. Besharse J, Bok D. The retina and its disorders. Boston: Academic Press. c2011. ISBN 9780123821980. 3. Bulut M, Kurtulus F, Goyozkaya O, et al. Evaluation of optical coherence tomography angiographic findings in Alzheimer’s type dementia. British Journal of Ophthalmology. 2018;102(2):233-237. doi: 10.1136/bjophthalmol-2017-310476. 4. Campbell JP, Zhang M, Hwang TS, et al. Detailed vascular anatomy of the human retina by projection‑resolved optical coherence tomography angiography. Sci Rep. 2017;7:42201. doi.org/10.1038/srep42201. 5. Coscas F, Sellam A, Glacet‑Bernard A, et al. Normative data for vascular density in superficial and deep capillary plexuses of healthy adults assessed by optical coherence tomography angiography. Investigative ophthalmology & visual science. 2016;57(9):OCT211-OCT223. doi: 10.1167/iovs.15-18793. 6. D’haeseleer M, Hostenbach S, Peeters I, et al. Cerebral hypoperfusion: a new pathophysiologic concept in multiple sclerosis? Journal of Cerebral Blood Flow & Metabolism. 2015;35(9):1406-1410. doi: 10.1038/jcbfm.2015.131. 7. Feigin VL, Abajobir AA, Abate KH, et al. Global, regional, and national burden of neurological disorders during 1990– 2015: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet Neurology. 2017;16(11):877-897. doi. org/10.1016/S1474-4422(17)30299-5. 8. Feucht N, Maier M, Lepennetier G, et al. Optical coherence tomography angiography indicates associations of the retinal vascular network and disease activity in multiple sclerosis. Multiple Sclerosis Journal. 2019;25(2):224-234. doi. org/10.1177/1352458517750009. 9. Frank RN, Turczyn T, Das A. Pericyte coverage of retinal and cerebral capillaries. Investigative ophthalmology & visual science. 1990;31(6):999-1007. 10. Hormel T, Hwang TS, Bailey ST, et al. Artificial intelligence in OCT angiography. Progress in Retinal and Eye Research. 2021;85:100965. doi.org/10.1016/j.preteyeres.2021.100965. 11. Higashiyama T, Nishida Y, Ohji M. Optical coherence tomography angiography in eyes with good visual acuity recovery after treatment for optic neuritis. PLoS One. 2017;12(2):e0172168. doi.org/10.1371/journal.pone.0172168. 12. Jiang H, Delgado S, Tan J, et al. Impaired retinal microcirculation in multiple sclerosis. Multiple Sclerosis Journal. 2016;22(14):1812-1820. doi.org/10.1177/1352458516631035. 13. Jiang H, Gameiro GR, Liu Y, et al. Visual function and disability are associated with increased retinal volumetric vessel density in patients with multiple sclerosis. American journal of ophthalmology. 2020;213:34-45. doi.org/10.1016/j. ajo.2019. 12. 021. 14. Kaur C, Foulds WS, Ling EA. Blood‑retinal barrier in hypoxic ischaemic conditions: basic concepts, clinical features and management. Progress in retinal and eye research. 2008;27(6):622-647. doi.org/10.1016/j.preteyeres.2008. 09. 003. 15. Kleerekooper I, Houston S, Dubis AM, et al. Optical coherence tomography angiography (OCTA) in multiple sclerosis and neuromyelitis optica spectrum disorder. Frontiers in Neurology. 2020;11:604049. doi.org/10.3389/fneur.2020.604049. 1a 16. Kleerekooper I, Petzold A, Trip SA. Anterior visual system imaging to investigate energy failure in multiple sclerosis. Brain. 2020;143(7):1999-2008. doi.org/10.1093/brain/awaa049. 1 b 17. Kwapong WR, Ye H, Peng C, et al. Retinal microvascular impairment in the early stages of Parkinson’s disease. Investigative ophthalmology & visual science. 2018;59(10):4115-4122. doi.org/10.1167/iovs.17-23230. 18. Lanzillo R, Moccia M, Criscuolo C, et al. Optical coherence tomography angiography detects retinal vascular alterations in different phases of multiple sclerosis. Multiple Sclerosis Journal. 2019;25(2):300-301. doi.org/10.1177/1352458518768060. 19. Lee GI, Park KA, Oh SY, et al. Differential patterns of parafoveal and peripapillary vessel density in multiple sclerosis and neuromyelitis optica spectrum disorder. Multiple Sclerosis and Related Disorders. 2021;49:102780. doi.org/10.1016/j. msard.2021.102780. 20. Li Y, Choi WJ, Wei W, et al. Aging‑associated changes in cerebral vasculature and blood flow as determined by quantitative optical coherence tomography angiography. Neurobiology of aging. 2018;70:148-159. doi.org/10.1016/j.neurobiolaging.2018. 06. 017. 21. Martin AR, Bailie JR, Robson T, et al. Retinal pericytes control expression of nitric oxide synthase and endothelin-1 in microvascular endothelial cells. Microvascular research. 2000;59(1):131-139. doi.org/10.1006/mvre.1999.2208.

RkJQdWJsaXNoZXIy NDA4Mjc=