Neurol. praxi. 2025;26(1):17-23 | DOI: 10.36290/neu.2025.012

The genetics of Alzheimer's disease and dementia with Lewy bodies

prof. MUDr. Stanislav ©utovský, PhD.1, RNDr. Robert Petrovič, PhD.2, RNDr. Katarína Kolejáková, PhD.2, prof. MUDr. Peter Turčáni, PhD.1
1 I. neurologická klinika LF UK a UNB, Bratislava
2 Ústav lekárskej biológie, genetiky a klinickej genetiky LF UK a UNB, Bratislava

The genetics of neurodegenerative dementias is a turbulent topic. On the one hand, the number of genes involved in the pathogenesis of neurodegenerative processes is gradually increasing, on the other hand, the problem of interpretation of the results is emerging. Alzheimer's disease (AD) and dementia with Lewy bodies (DLB) represent currently well-defined clinical entities. AD has clearly defined causal genes (APP, PSEN1, PSEN2) and a major susceptibility gene (APOE). In addition to these, new susceptibi­lity genes are gradually emerging that modify the clinical picture, the age of onset and, together with APOE, create a complicated genetic background. Dementia with Lewy bodies (DLB) is a more heterogeneous entity than Alzheimer's disease, both clinically and genetically. DLB susceptibility genes are multiple genes shared with Alzheimer`s disease, Parkinson disease, frontotemporal dementia (FTD) and other neurodegenerations. In our paper, we aim to summarize the genetic background of both AD and DLB, to characterize their similarities and differences, and to highlight the complexity of the neurodegenerative ecosystem ("neurodegeneratome").

Keywords: Alzheimer's disease, apolipoprotein E, dementia with Lewy bodies.

Received: August 26, 2024; Revised: January 31, 2025; Accepted: February 4, 2025; Prepublished online: February 4, 2025; Published: March 19, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
©utovský S, Petrovič R, Kolejáková K, Turčáni P. The genetics of Alzheimer's disease and dementia with Lewy bodies. Neurol. praxi. 2025;26(1):17-23. doi: 10.36290/neu.2025.012.
Download citation
PDF will be unlocked 19.3.2026

References

  1. Abushakra S, Porsteinsson AP, Sabbagh M, et al. APOE ε4/ε4 homozygotes with early Alzheimer's disease show accelerated hippocampal atrophy and cortical thinning that correlates with cognitive decline. Alzheimers Dement (N Y). 2020;6(1):e12117. Published 2020 Dec 4. doi:10.1002/trc2.12117. Go to original source... Go to PubMed...
  2. Ali M, Archer DB, Gorijala P, et al. Large multi-ethnic genetic analyses of amyloid imaging identify new genes for Alzheimer disease. Acta Neuropathol Commun. 2023;11(1):68. Published 2023 Apr 26. doi:10.1186/s40478-023-01563-4. Go to original source... Go to PubMed...
  3. Bellenguez C, Küçükali F, Jansen IE, et al. New insights into the genetic etiology of Alzheimer's disease and related dementias. Nat Genet. 2022;54(4):412-436. doi:10.1038/s41588-022-01024-z. Go to original source... Go to PubMed...
  4. Bentivenga GM, Baiardi S, Mastrangelo S, et al. Clinical, neuropathological, and molecular characteristics of rapidly progressive dementia with Lewy bodies: a distinct clinicopathological entity? Alzheimer's Research & Therapy. 2024: in press. Go to original source... Go to PubMed...
  5. Bradshaw EM, Chibnik LB, Keenan BT, et al. CD33 Alzheimer's disease locus: Altered monocyte function and amyloid biology. Nat Neurosci. 2013; 343:1-19. Go to original source... Go to PubMed...
  6. Bu G. Apolipoprotein E and its receptors in Alzheimer's disease: pathways, pathogenesis and therapy. Nat Rev Neurosci. 2009;10(5):333-44. Go to original source... Go to PubMed...
  7. Desikan RS, Fan CC, Wang Y, et al. Genetic assessment of age-associated Alzheimer disease risk: Development and validation of a polygenic hazard score. PLoS Med. 2017;14(3):e1002258. doi:10.1371/journal.pmed.1002258. Go to original source... Go to PubMed...
  8. Durmanova V, Javor J, Parnicka Z, et al. TREM2 coding variants in Slovak Alzheimer's disease patients. J Integr Neurosci. 2022;21(4):105. doi:10.31083/j.jin2104105. Go to original source... Go to PubMed...
  9. Ebbert MT, Ridge PG, Wilson AR, et al. Population-based analysis of Alzheimer's disease risk alleles implicates genetic interactions. Biol Psychiatry. 2014;75(9):732-737. doi:10.1016/j.biopsych.2013.07.008. Go to original source... Go to PubMed...
  10. Goate A, Chartier-Harlin MC, Mullan M, et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature. 1991;349(6311):704-706. doi:10.1038/349704a0. Go to original source... Go to PubMed...
  11. Goate A, Hardy J. Twenty years of Alzheimer's disease-causing mutations. J Neurochem. 2012;120 Suppl 1:3-8. doi:10.1111/j.1471-4159.2011.07575.x. Go to original source... Go to PubMed...
  12. Goldman JS, Hahn SE, Catania JW, et al. Genetic counseling and testing for Alzheimer disease: joint practice guidelines of the American College of Medical Genetics and the National Society of Genetic Counselors [published correction appears in Genet Med. 2011 Aug;13(8):749]. Genet Med. 2011;13(6):597-605. Go to original source... Go to PubMed...
  13. Guerreiro R, Brás J, Hardy J. SnapShot: genetics of Alzheimer's disease. Cell. 2013;155(4):968-968.e1. doi:10.1016/j.cell.2013.10.037. Go to original source... Go to PubMed...
  14. Herz J, Beffert U. Apolipoprotein E receptors: linking brain development and Alzheimer's disease. Nat Rev Neurosci. 2000;1(1):51-8. Go to original source... Go to PubMed...
  15. Hollingworth P, Harold D, Sims R, et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nat Genet. 2011;43(5):429-435. doi:10.1038/ng.803. Go to original source... Go to PubMed...
  16. Holstege H, Hulsman M, Charbonnier C, et al. Exome sequencing identifies rare damaging variants in ATP8B4 and ABCA1 as risk factors for Alzheimer's disease. Nat Genet. 2022;54(12):1786-1794. doi:10.1038/s41588-022-01208-7. Go to original source... Go to PubMed...
  17. Huang YA, Zhou B, Wernig M, et al. ApoE2, ApoE3, and ApoE4 Differentially Stimulate APP Transcription and Aβ Secretion. Cell. 2017;168(3):427-441.e21. doi:10.1016/j.cell.2016.12.044. Go to original source... Go to PubMed...
  18. Inguanzo A, Poulakis K, Mohanty R, et al. MRI data-driven clustering reveals different subtypes of Dementia with Lewy bodies. NPJ Parkinsons Dis. 2023;9(1):5. Published 2023 Jan 20. doi:10.1038/s41531-023-00448-6. Go to original source... Go to PubMed...
  19. Javor J, Ďurmanová V, Párnická Z, et al. Association of CD33 rs3865444:C>A polymorphism with a reduced risk of late-onset Alzheimer's disease in Slovaks is limited to subjects carrying the APOE ε4 allele. Int J Immunogenet. 2020;47(5):397-405. doi:10.1111/iji.12489. Go to original source... Go to PubMed...
  20. Karch CM, Goate AM. Alzheimer's disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry. 2015;77(1):43-51. doi:10.1016/j.biopsych.2014.05.006. Go to original source... Go to PubMed...
  21. Keogh MJ, Kurzawa-Akanbi M, Griffin H, et al. Exome sequencing in dementia with Lewy bodies. Transl Psychiatry. 2016;6(2):e728. Published 2016 Feb 2. doi:10.1038/tp.2015.220. Go to original source... Go to PubMed...
  22. Lambert JC, Ibrahim-Verbaas CA, Harold D, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat Genet. 2013;45(12):1452-1458. doi:10.1038/ng.2802. Go to original source... Go to PubMed...
  23. Liu CC, Kanekiyo T, Xu H, et al. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol. 2013;9(2):106-118. doi:10.1038/nrneurol.2012.263. Go to original source... Go to PubMed...
  24. McKeith IG, Boeve BF, Dickson DW, et al. Diagnosis and management of dementia with Lewy bodies: Fourth consensus report of the DLB Consortium. Neurology. 2017;89(1):88-100. Go to original source... Go to PubMed...
  25. Naj AC, Schellenberg GD; Alzheimer's Disease Genetics Consortium (ADGC). Genomic variants, genes, and pathways of Alzheimer's disease: An overview. Am J Med Genet B Neuropsychiatr Genet. 2017;174(1):5-26. doi:10.1002/ajmg.b.32499. Go to original source... Go to PubMed...
  26. Noveir SD, Kerman BE, Xian H, et al. Effect of the ABCA1 agonist CS-6253 on amyloid-β and lipoprotein metabolism in cynomolgus monkeys. Alzheimers Res Ther. 2022;14(1):87. doi:10.1186/s13195-022-01028-1. Go to original source... Go to PubMed...
  27. Outeiro TF, Koss DJ, Erskine D, et al. Dementia with Lewy bodies: an update and outlook. Mol Neurodegener. 2019;14(1):5. Published 2019 Jan 21. doi:10.1186/s13024-019-0306-8. Go to original source... Go to PubMed...
  28. Reiman EM. Exceptionally low likelihood of Alzheimer's dementia in APOE2 homozygotes from a 5,000-person neuropathological study. Nature Communications. 2020;11:667. https://doi.org/10.1038/s41467-019-14279-8. Go to original source... Go to PubMed...
  29. Reitz C, Jun G, Naj A, et al. Variants in the ATP-binding cassette transporter (ABCA7), apolipoprotein E ε4, and the risk of late-onset Alzheimer disease in African Americans. JAMA. 2013;309(14):1483-1492. doi:10.1001/jama.2013.2973. Go to original source... Go to PubMed...
  30. Rongve A, Witoelar A, Ruiz A, et al. GBA and APOE ε4 associate with sporadic dementia with Lewy bodies in European genome wide association study Sci Rep. 2019;9(1):7013. doi:10.1038/s41598-019-43458-2. Go to original source... Go to PubMed...
  31. Sanders J, Schenk V, van Veen P. A family with Pick disease. Veerhandelingen de Koninklijike Nederlandese Akademie van Wetenschappen, 1939.
  32. Schellenberg GD, Montine TJ. The genetics and neuropathology of Alzheimer's disease. Acta Neuropathol. 2012;124(3):305-323. doi:10.1007/s00401-012-0996-2. Go to original source... Go to PubMed...
  33. Silvaieh S, König T, Wurm R, et al. Comprehensive genetic screening of early-onset dementia patients in an Austrian cohort-suggesting new disease-contributing genes. Hum Genomics. 2023;17(1):55. Published 2023 Jun 17. doi:10.1186/s40246-023-00499-z. Go to original source... Go to PubMed...
  34. Strittmatter WJ, Saunders AM, Schmechel D, et al. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A. 1993;90(5):1977-81. Go to original source... Go to PubMed...
  35. van der Lee SJ, Conway OJ, Jansen I, et al. A nonsynonymous mutation in PLCG2 reduces the risk of Alzheimer's disease, dementia with Lewy bodies and frontotemporal dementia, and increases the likelihood of longevity. Acta Neuropathol. 2019;138(2):237-250. doi:10.1007/s00401-019-02026-8. Go to original source... Go to PubMed...
  36. Winfree RL, Seto M, Dumitrescu L, et al. TREM2 gene expression associations with Alzheimer's disease neuropathology are region-specific: implications for cortical versus subcortical microglia. Acta Neuropathol. 2023;145(6):733-747. doi:10.1007/s00401-023-02564-2. Go to original source... Go to PubMed...




Neurology for Practice

Madam, Sir,
please be aware that the website on which you intend to enter, not the general public because it contains technical information about medicines, including advertisements relating to medicinal products. This information and communication professionals are solely under §2 of the Act n.40/1995 Coll. Is active persons authorized to prescribe or supply (hereinafter expert).
Take note that if you are not an expert, you run the risk of danger to their health or the health of other persons, if you the obtained information improperly understood or interpreted, and especially advertising which may be part of this site, or whether you used it for self-diagnosis or medical treatment, whether in relation to each other in person or in relation to others.

I declare:

  1. that I have met the above instruction
  2. I'm an expert within the meaning of the Act n.40/1995 Coll. the regulation of advertising, as amended, and I am aware of the risks that would be a person other than the expert input to these sites exhibited


No

Yes

If your statement is not true, please be aware
that brings the risk of danger to their health or the health of others.